На правах рукописи

Данг Туан Фыонг

Разреженные электромагнитные рассеиватели из проводной сетки и алгоритмы для их моделирования

Специальность 2.2.14 — Антенны, СВЧ-устройства и их технологии

Автореферат

диссертации на соискание учёной степени кандидата технических наук

Работа выполнена федеральном государственном В автономном образовательном учреждении высшего образования «Томский государственный университет систем управления и радиоэлектроники» (ТУСУР)

Научный руководитель – Газизов Тальгат Рашитович,

> доктор технических наук, профессор, заведующий кафедрой телевидения и управления, ТУСУР

Официальные оппоненты – Дунаевский Григорий Ефимович,

> доктор технических наук, профессор, профессор кафедры радиоэлектроники ФГАОУ ВО «Национальный исследовательский Томский государственный университет»;

Горбачев Анатолий Петрович,

доктор технических наук, профессор, профессор ФГБОУ ВО «Новосибирский государственный технический университет»

Ведущая организация – ФГБОУ ВО «Поволжский государственный

> университет телекоммуникаций и информатики», г. Самара

Защита состоится 18 декабря 2025 г. в 09 часов 00 минут на заседании диссертационного совета 24.2.415.01, созданного на базе ТУСУРа, по адресу: 634050, г. Томск, ул. Ленина, 40, ауд. 201.

С диссертацией можно ознакомиться в библиотеке и на сайте ТУСУРа https://postgraduate.tusur.ru/urls/urqww5uz

Автореферат разослан « » октября 2025 г.

Ученый секретарь диссертационного совета доктор физико-математических наук

Мандель Аркадий Евсеевич

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы

Радиотехнические устройства широко распространены в повседневной жизни. Для их функционирования и испытания используются рассеиватели. Растёт потребность в создании лёгких, компактных, недорогих и эффективных рассеивателей. Их типичными примерами являются уголковые отражатели (УО). Они используются в радиолокационных системах, совершенствовании антенн, навигационном оборудовании и др. УО легко изготавливаются и обладают значительными рассеивающими способностями в широком диапазоне углов падения волн, но часто имеют большие размеры и массу. Между тем снижение массы и габаритов рассеивателей уменьшает затраты на транспортировку, упрощает техническое обслуживание и снижает негативное воздействие на них факторов окружающей среды. Для этого есть способы, но они, как правило, трудно реализуемы и могут ухудшать рассеяние. В этой связи актуальна разработка новых подходов к снижению массы рассеивателей.

проектирования недорогих рассеивателей требуемыми характеристиками необходимы системы автоматизированного проектирования (САПР), позволяющие оценить и оптимизировать характеристики конструкций до их изготовления, а также минимизировать технические ошибки в процессе производства. Однако точное моделирование, особенно сложных структур, может требовать значительных вычислительных затрат. В настоящее время привлекает особое внимание теория характеристических мод (ТХМ), дающая глубокое понимание физической природы электромагнитного взаимодействия в структуре и тем самым способствующая её эффективной оптимизации. Между тем в приложениях ТХМ важны определение значимых мод для влияния на сокращение вычислительных затрат при анализе отслеживание мод. В этой связи актуальна разработка алгоритмов для ускорения анализа по ТХМ и отслеживания мод.

Степень разработанности темы

Уменьшению массы и размеров рассеивателей и затрат для их моделирования и изготовления посвящено много публикаций. Известные учёные в этой области: Balanis A., Chai S.R., Harrington R.F., Richmond J.H., Rubinstein A., Тора Т., Trueman C.W., Wulf D. и др. УО исследовали Dai F., Garthwaite M. C., Gu J., Iizuka T., Kai-Daniel J., Гусеница Я.Н., Булатова Л. И. и др. Активно использовали ТХМ для оптимизации конструкции антенн Беличенко В.П., Буянов Ю.И., Дымов Г.А., Мироньчев А.С., Уваров А.В., Фаняев И.А. и др.

В 2023 г. Алхадж Хасан А.Ф. и Газизов Т.Р. запатентовали (RU 2814795) способ создания разреженных антенн посредством аппроксимации оптимальной токовой сеткой (AOTC). Её идея — исключить из сетки провода с малыми токами, так как их вклад в излучение мал. Благодаря исследованиям Нгуена М.Т. и авторов патента показано, что это уменьшает массу, парусность и габариты антенны при контроле её характеристик допуском удаления элемента сетки (ДУЭС), а также затраты на её последующее моделирование. Между тем для создания разреженных рассеивателей АОТС не применялась.

Цель работы — разработать методику создания разреженных рассеивателей из проводной сетки (ПС) на основе АОТС и алгоритмы снижения вычислительных затрат при применении ТХМ. Для её достижения надо решить следующие **задачи**: разработать разреженные рассеиватели на основе АОТС, создать их из ПС, усовершенствовать определение значимых мод в ТХМ, ускорить отслеживание мод в ТХМ.

Научная новизна

- 1. Впервые предложено создание разреженных рассеивателей на основе аппроксимации оптимальной токовой сеткой.
- 2. Разработан алгоритм уменьшения вычислительных затрат при анализе проводных антенн и рассеивателей по теории характеристических мод, отличающийся выделением значимых мод на основе произведения модальной значимости, вектора возбуждения и характеристических токов.
- 3. Предложено ускорение отслеживания характеристических мод, отличающееся совместным использованием собственных значений, собственных векторов и адаптивной подстройки частоты.

Теоретическая значимость

- 1. Результативно применены к проблематике диссертации метод моментов и теория характеристических мод.
- 2. Модернизирована максимально-токовая аппроксимация оптимальной токовой сеткой для создания разреженных рассеивателей.
- 3. Изучено влияние допуска удаления элемента сетки и порога выбора результирующей разреженной структуры на характеристики разреженных рассеивателей.
- 4. Исследовано влияние параметров возбуждения, модальной значимости и характеристических токов на характеристики ряда антенн и рассеивателей.

Практическая значимость

- 1. Разработаны программные модули для проектирования проводных рассеивателей с помощью метода моментов и теории характеристических мод.
- 2. Впервые созданы разреженные двухгранные и трёхгранные уголковые отражатели, используя аппроксимацию оптимальной проводной сеткой.
- 3. Аппроксимация рассеивателей оптимальной токовой сеткой уменьшает вычислительные затраты при их последующем моделировании.
- 4. Результаты использованы в учебном процессе ТУСУРа и двух научноисследовательских работах госзадания (3 акта и письмо поддержки АО «ИСС»).

Методы исследования: компьютерное моделирование, АОТС, МоМ, тонкопроводная аппроксимация, ТХМ, лабораторный эксперимент.

Положения, выносимые на защиту

- 1. Аппроксимация оптимальной токовой сеткой позволяет создание разреженных рассеивателей из проводной сетки: для двухгранных и трёхгранных уголковых отражателей со снижением массы до 1,5 и 7,2 раза по сравнению с исходными проводными и сплошными структурами, при отклонении моностатической эффективной площади рассеяния до 0,7 дБм².
- 2. Выделение значимых мод на основе произведения модальной значимости, вектора возбуждения и характеристических токов ускоряет

моделирование рассеяния прямоугольной проводной сетки до 33 раз, двухгранного уголкового отражателя до 38 раз и трёхгранного уголкового отражателя до 26 раз, с уменьшением объёма памяти до 2,5, 6,5 и 1,7 раза соответственно.

3. Совместное использование собственных значений, собственных векторов и адаптивной подстройки частоты ускоряет отслеживание характеристических мод диполя до 31 раза, креста до 3 раз, патч-антенны до 10 раз и рупорной антенны до 9 раз.

Достоверность результатов подтверждена сравнением результатов моделирования, других программ, эксперимента и других авторов.

Использование результатов

- 1. Проект «Исследование путей создания пространственнораспределенных многоцелевых информационно-телекоммуникационных систем радиомониторинга и связи, включающих оптические каналы, их ключевых компонент на основе численных и экспериментальных методов анализа СВЧ и оптических сигналов в процессе их формирования, преобразования и обработки в радиочастотных устройствах, приемных и передающих фотонных интегральных модулях и при распространении в неоднородных средах», госзадание FEWM-2023-0014, 2023–2025 гг.
- 2. Проект «Методология автоматизированного проектирования радиоэлектронной аппаратуры, функционирующей в условиях деструктивных воздействий», госзадание FEWM-2024-0005, 2024—2026 гг.
- 3. Учебный процесс по дисциплинам, связанным с электромагнитной совместимостью, для студентов ТУСУРа.

Апробация результатов. Результаты позволили подготовить заявки и победить в конкурсах по госзаданию (проекты FEWM-2023-0014, FEWM-2024-0005) и назначению стипендии Президента ТУСУРа в 2024 г.

Результаты докладывались на Всерос. молодёжной научно-практ. конф. «Нанотехнологии. Информация. Радиотехника» (Омск, 2024), Межд. конф. аспирантов молодых ученых «Перспективы И фундаментальных наук» (Томск, 2024), Межд. научно-тех. конф. студентов, аспирантов и молодых учёных «Научная сессия ТУСУР» (Томск, 2024), Межд. научно-практ. конф. «Электронные средства и системы управления» (Томск, 2024), Всерос, научно-тех, конф, «Обмен опытом в области создания сверхширокополосных радиоэлектронных систем» (Омск, 2024), Межд. научнопракт. конф. СИБРЕСУРС (Томск, 2024), IEEE Int. Conf. on Actual Problems of Electron Devices Engineering (Saratov, 2024), IEEE Int. Ural Conf. on Electrical Power Engineering (Magnitogorsk, 2024), IEEE Int. Russian Automation Conf. (Sochi, 2024), IEEE Int. Conf. on Wave Electronics and its Application in Information and Telecommunication Systems (St. Petersburg, 2024), IEEE Int. Conf. of Signal Synchronization, Generating and Processing Telecommunications (Vyborg, 2024), IEEE Int. Conf. on Information, Control, and Communication Technologies (Vladikavkaz, 2024), IEEE Int. Conf. on Antenna Design and Measurement (St. Petersburg, 2024), IEEE Int. Conf. «Engineering Management of Communication and Technology» (Vienna, Austria, 2024).

Публикации. Опубликована 31 работа (6 без соавторов): 2 статьи в журналах из перечня ВАК; 1 статья в журнале из Q2 WoS/Scopus, 2 статьи в других журналах и 12 докладов в трудах конференций, индексируемых WoS/Scopus; 9 докладов в трудах других конференций; 5 свидетельств о регистрации программы для ЭВМ.

Личный вклад. Участие в постановке задач исследования и получении результатов, составляющих научную новизну работы. Часть данных по моделированию получена совместно с *Алхаджем Хасаном А.Ф.* Вклад автора состоит в моделировании, изготовлении разреженных рассеивателей, обработке и интерпретации результатов.

Структура и объём: введение, 4 раздела, заключение, список сокращений, список литературы из 204 наименований и приложение; объём с приложением – 193 с., в т.ч. 171 рисунок и 45 таблиц.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

1. Обзор по теме исследования

В подразделе 1.1 приведены основы МоМ и аппроксимации поверхности посредством ПС. В подразделе 1.2 представлены основные применения ТХМ и актуальность ускорения анализа по ТХМ и отслеживания характеристических мод. В подразделе 1.3 выполнен обзор исследований по особенностям проектирования и применения УО, способам уменьшения массы рассеивателей, а также АОТС и её модификациям для создания разреженных антенн. В подразделе 1.4 сформулированы цель и задачи работы.

2. Разработка разреженных рассеивателей на основе АОТС

В подразделе 2.1 представлено моделирование по МоМ со ступенчатыми базисными функциями (СБФ) рассеивателей: крест из проводов, прямоугольная ПС, двухгранный УО (ДУО), треугольный (ТТУО) и квадратный (КТУО) трехгранные УО. Бистатическая (БЭПР) и моностатическая (МЭПР) эффективные площади рассеяния, полученные по МоМ со СБФ, сравнены с полученными по другим методам и измерением. Сплошная поверхность представлялась как ПС, каждая ячейка которой формировалась 4 проводами, представленными одним сегментом. Используя длину сегмента $\lambda/20 \le \Delta \le \lambda/6$ и радиус провода по правилу равной площади, получены результаты, хорошо согласующиеся с опубликованными. Также сравнены аппроксимации с разными типами ячеек и показана для прямоугольных простота моделирования поверхности при сохранении высокой точности результатов.

В подразделе 2.2 изложена методика синтеза разреженных рассеивателей из ПС исключением проводов с малыми токами. Это уменьшает массу, размеры и затраты на вычисления при сохранении характеристик рассеяния. Разработан алгоритм синтеза разреженного рассеивателя при возбуждениях: с заданного направления, в неизвестной и заданной областях. При заданном направлении вычисляются токи в ПС по МоМ со СБФ, максимальный или средний модуль токов всей структуры, а модули всех токов нормируются относительно него. Затем они сравниваются с заданным порогом, называемым допуском удаления элемента сетки (ДУЭС). Провода, для которых они ниже ДУЭС, исключаются из ПС. Обобщённые результаты подраздела сведены в таблице 2.1.

На практике рассеиватели возбуждаются волной, падающей с различных направлений. Для этого разработан алгоритм синтеза разреженной ПС при возбуждении в диапазоне углов. Для каждого угла формируется свой разреженный рассеиватель. Потом определяется число появлений каждого провода во всех этих рассеивателях.

Таблица 2.1 – Разреженные ΠC разных типов рассеивателя, их улучшения и максимальные расхождения по сравнению с исходной ΠC

Струк-	к- Розбужнания ДУЭС, Модель конечной разреженной структуры/Т/Уменьшение							
тура	Возбуждение	%	массы/Максимальное расхождение на МЭПРмакс					
Плас- тина	$\theta^{\text{пад}} = 0 - 360^{\circ}$ $\phi^{\text{пад}} = 0 - 360^{\circ}$	40	50/1,8/0,0002 100/1,9/0,194 200/1,95/0,479 300/2,02/0,4/					
	θ ^{пад} =60-120° φ ^{пад} =60-120°		50/1,96/0,0003 100/1,98/0,014 200/2,1/0,33 300/2,13/0,4					
ДУО	$\theta^{\text{пад}} = 0 - 360^{\circ}$ $\phi^{\text{пад}} = 0 - 360^{\circ}$	20	0/1,16/0,016 500/1,9/0,186 600/2,1/0,8 700/6,18/15,					
	өпад=_40_40° фпад=84_96°		600/1,92/0,19 700/2,27/1,62 800/5,44/14,3					
Круглый ТУО (КрТУО)	$\theta^{\text{пад}} = 0 - 360^{\circ}$ $\phi^{\text{пад}} = 0 - 360^{\circ}$	25	800/1,45/0,036 900/1,5/0,67					
	$\theta^{\text{пад}} = -40-67^{\circ}$ $\phi^{\text{пад}} = 27-63^{\circ}$		600/1,44/0,03 700/1,51/0,04 800/1,6/0,53					

Число появлений сравнивается с порогом выбора результирующей разреженной структуры T. Провода, появляющиеся меньше T раз, исключаются. Это применяется ко всем проводам всех рассеивателей. В итоге формируется конечная разреженная структура (КРС) уменьшенной массой и значительно меньшими вычислительными затратами для последующего моделирования. Когда же конкретная область возбуждения падающей волны неизвестна, надо учитывать все углы падения ($\theta^{\text{пад}}=0-359^{\circ}$ и $\phi^{\text{пад}}=0-359^{\circ}$).

Поскольку у МЭПР много значений, сравнение МЭПР всех разреженных и исходной ПС сложно. Поэтому, для анализа сходства МЭПР для КРС и исходной ПС при изменении T, рассчитаны различные коэффициенты корреляции МЭПР каждой КРС и исходной ПС: Пирсона, Спирмена, косинуса угла, евклидово расстояние и среднеквадратическое отклонение.

В подразделе 2.3 представлено применение разработанных алгоритмов модификаций АОТС к рассеивателям. Так, после АОТС могут появиться свободные провода. Для их устранения в разреженных антеннах ранее предложена максимально-токовая АОТС (МТАОТС). Её идея — восстановить провода с максимальным током для соединения свободных проводов с основной структурой. Однако она имеет недостатки: повторное соединение проводов и невозможность соединения всех свободных. Для устранения этого разработаны два алгоритма. Первый учитывает все возможные варианты соединения между проводами, повышая точность. Второй существенно уменьшает время обработки по сравнению с первым. Кроме того, разработан алгоритм для исключения лишних соединений. Эти алгоритмы применены к ДУО и КТУО. Сравнение характеристик до и после соединения проводов по этим алгоритмам показало их совпадение. При этом рост массы разреженного рассеивателя мал по сравнению с несоединённым.

3. Создание разреженных рассеивателей из проводной сетки

В подразделе 3.1 представлены методика на основе АОТС и её модификация для создания разреженных квадратных ПС и ДУО из ПС. На рисунке 3.1 показаны исходная ПС и разреженная на частоте 6 ГГц для $\phi^{\text{пад}}=\theta^{\text{пад}}=60-120^{\circ}$ при ДУЭС=20%. При падающей волне с θ -поляризацией все вертикальные элементы сохраняются в КРС. При T=150 в КРС остаются и горизонтальные провода по краям квадратной ПС, что обеспечивает соединение между вертикальными. (Для измерения использован P4M-18 с пределами допускаемой абсолютной погрешности измерения $|s_{21}|$ — от ± 0.5 до ± 2.5 дБ.)

На рисунке 3.2 показаны вычисленные и измеренные МЭПР для сплошной пластины и её исходной и разреженной ПС. Показана хорошая согласованность между измеренными МЭПР для ПС и сплошной пластины

Рисунок 3.1 – Исходная (a) и разреженная (δ) квадратные Π С

в главном лепестке.

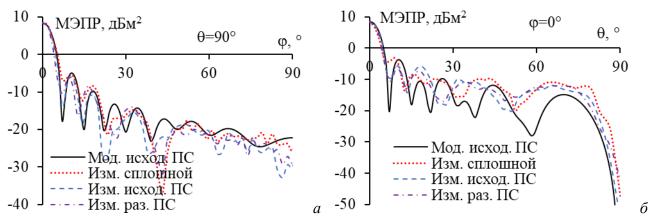


Рисунок 3.2 - МЭПР квадратных ПС в плоскостях θ =90° (*a*) и ϕ =0° (*б*)

Ha рисунке 3.3 приведены частотные зависимости максимальной МЭПР для исходной и разреженной (на частоте 6 ГГц) ПС. Для 5-6 ГГц моделирования результаты эксперимента хорошо согласуются, а для 6,5–8 ГГц расхождения больше изза уменьшения длины волны: для 7,5-8 ГГц измеренные МЭПР ниже вычисленной из-за малого $\lambda/\Delta \approx 5.7$.

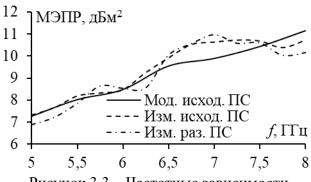


Рисунок 3.3 — Частотные зависимости максимальной МЭПР для квадратных ПС

Разреживание ДУО выполнялось для $\theta^{\text{пад}}=84-96^{\circ}$ и $\phi^{\text{пад}}=-50-+50^{\circ}$ на частоте 6 ГГц при ДУЭС=20% и T=0, 50, 100, 300, 500 (рисунок 3.4). На рисунке 3.5 представлены МЭПР для ДУО из исходной ПС и разреженных при разных T. Для главного лепестка (ϕ =0–50°) измеренные МЭПР исходного и разреженных ДУО хорошо согласуются. Малые расхождения могут быть связаны с неортогональностью граней.

В подразделе 3.2 представлена методика на основе АОТС и её модификация для создания разреженных ТТУО и КТУО из ПС. На рисунке 3.6 показаны реальные исходный и разреженные КТУО из ПС при ДУЭС=20%, T=0, 100, 200 для θ ^{пад}=40–67°, φ ^{пад}=–18–+18°.

На рисунке 3.7 представлены МЭПР для исходного и разреженных КТУО из ПС. Для главного лепестка наблюдается хорошая согласованность по уровню и ширине. Для 5-6 ГГц (рисунок 3.7ε) данные моделирования и измерений хорошо согласуются, а для 6,5-8 ГГц расхождения больше (до 0,5 дБм²) из-за неровности граней, потерь в проводниках и условий измерения.

Разреживание ТТУО выполнялось для f=6 ГГц, $\theta^{\text{пад}}=30-80^{\circ}$, $\phi^{\text{пад}}=-30-80^{\circ}$ $+30^{\circ}$ при ДУЭС=20% и T=0, 100, 200, 300, 400 (рисунок 3.8). С ростом T число проводов уменьшается, что снижает массу. На рисунке 3.9 представлены МЭПР для исходного и разреженных ТТУО из ПС. Для главного лепестка измеренные разреженных ТТУО хорошо согласуются МЭПР cисходного. Отклонения между измеренными и моделируемыми МЭПР ТТУО ДЛЯ погрешностями конструкций. Для 5-8 ГГц объяснимы изготовления (рисунок 3.9г) МЭПР исходного и разреженных ТТУО хорошо согласуются: отклонение до 0.7 дБм².

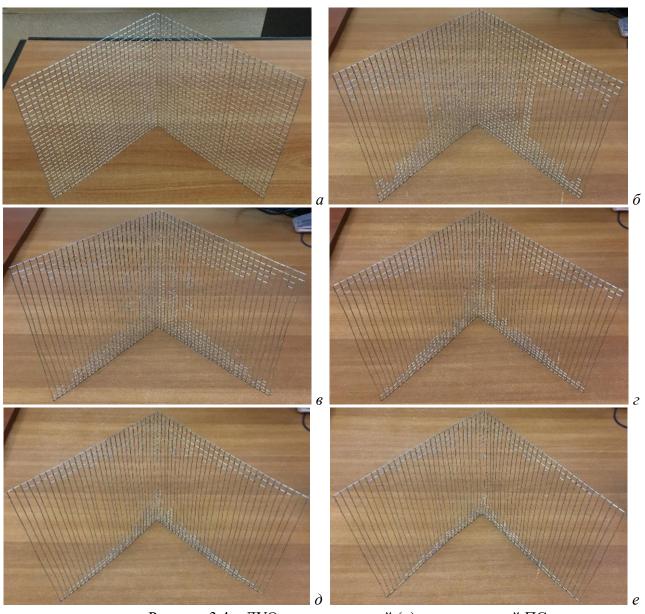


Рисунок 3.4 — ДУО в виде исходной (a) и разреженной ПС при T=0 (δ), 50 (ϵ), 100 (ϵ), 300 (δ), 500 (ϵ)

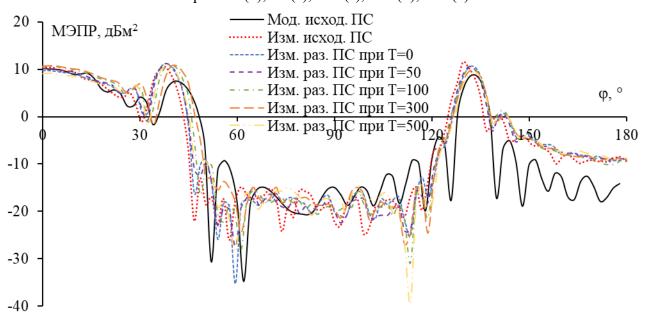


Рисунок 3.5 – МЭПР ДУО из ПС в плоскости θ =90°

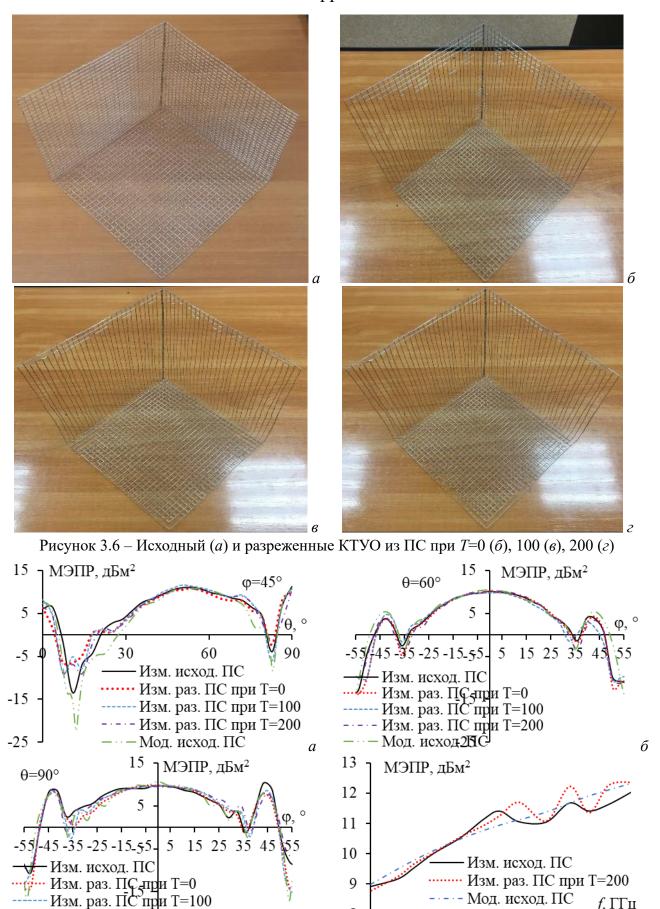


Рисунок 3.7 – МЭПР для исходного и разреженных КТУО из ПС в плоскостях ϕ =45° (a), θ =60° (b), θ =90° (b) и их частотные зависимости МЭПР при ϕ ^{пад}=45°, θ ^{пад}=60°

-·-·- Изм. раз. ПС при T=200

· - Мод. исход:2151C

8

5,5

6

6,5

7,5

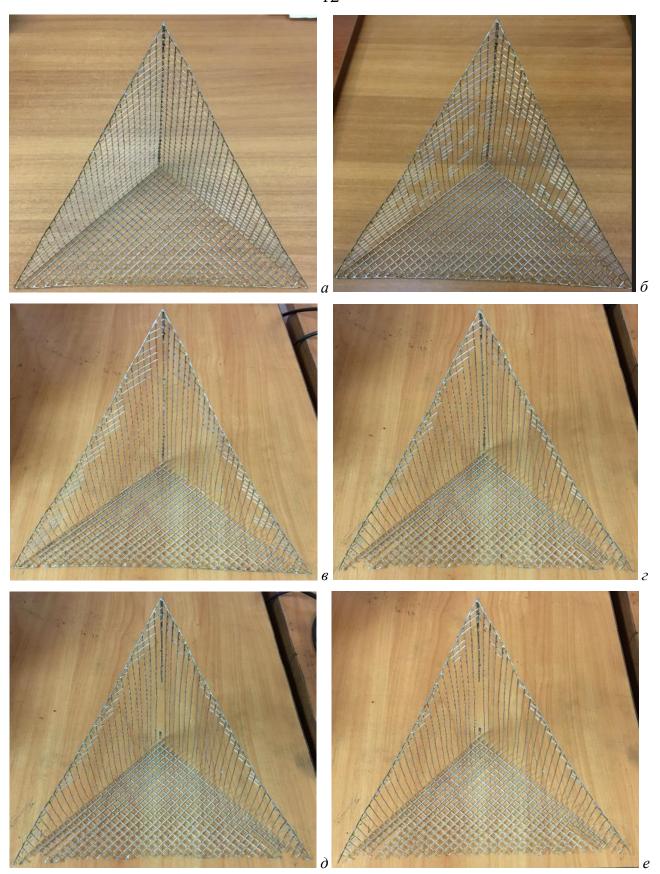


Рисунок 3.8 – ПС (a) и разреженные ТТУО при T=0 (δ) , 100 (e), 200 (ε) , 300 (δ) , 400 (e)

Уменьшение массы разреженных рассеивателей приведено в таблице 3.1. Примечательно, что при этом характеристики рассеяния разреженных и исходных ПС сохраняют хорошее совпадение в главном лепестке.

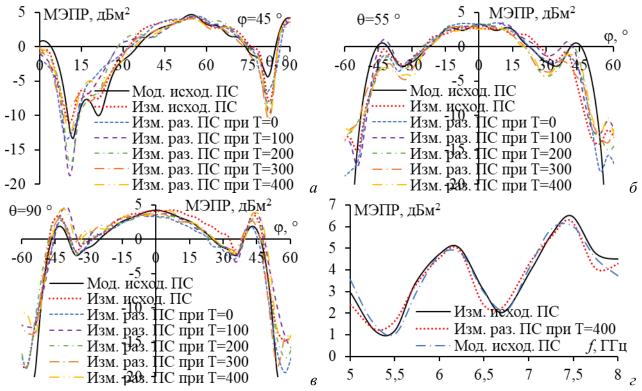


Рисунок 3.9 – МЭПР для ТТУО из ПС в плоскостях ϕ =45° (a), θ =55° (δ), θ =90° (ϵ) и частотные зависимости МЭПР при ϕ ^{пад}=45°, θ ^{пад}=55°

Таблица 3.1 – Сравнение исходных и разреженных рассеивателей разных типов из ПС

Тип рассеивателя	ДУЭС, %	T	Уменьшение массы, раз	МЭПР ^{макс} (дБм ²) (Разр./Исх.)	Ширина луча диаграммы МЭПР, ° (Разр./Исх.)
Квадратная ПС	20	150	1,82	8,71/9,06	5,5/6
	20	0	1,19	9,71/10,3	37/35
		50	1,36	10,1/10,3	37/35
ДУО		100	1,47	10,55/10,3	36/35
		300	1,61	10,7/10,3	37/35
		500	1,7	9,05/10,3	38/35
	20	0	1,38	10,87/11,01	33/33
КТУО		100	1,46	11,56/11,01	35/33
		200	1,51	10,78/11,01	34/33
	20	0	1,16	4,49/4,27	39/40
		100	1,34	4,4/4,27	39,6/40
ТТУО		200	1,41	4,19/4,27	39,6/40
		300	1,46	4,05/4,27	37,8/40
		400	1,51	4,07/4,27	40/40

4. Совершенствование теории характеристических мод

В подразделе 4.1 представлен алгоритм для определения мод, значительно влияющих на ток и поле излучения или рассеяния. Предположено, что для этого нужно учитывать модальную значимость $M3_n$, модальное возбуждение $\langle \mathbf{i}_n, \mathbf{v} \rangle$ и характеристический ток \mathbf{i}_n через произведение $\mathbf{p}_n = \langle \mathbf{i}_n, \mathbf{v} \rangle \mathbf{i}_n M3_n$. Тестирован алгоритм на прямоугольной ПС (15×10 ячеек, 1,6×1,2 м) (рисунок 4.1). Сравнены токи (300 МГц) по МоМ и ТХМ с разными типами мод. Токи и поля по МоМ и ТХМ на основе \mathbf{p}_n совпадают. МЭПР по МоМ и ТХМ почти совпадают друг с другом и согласуются с измеренной.

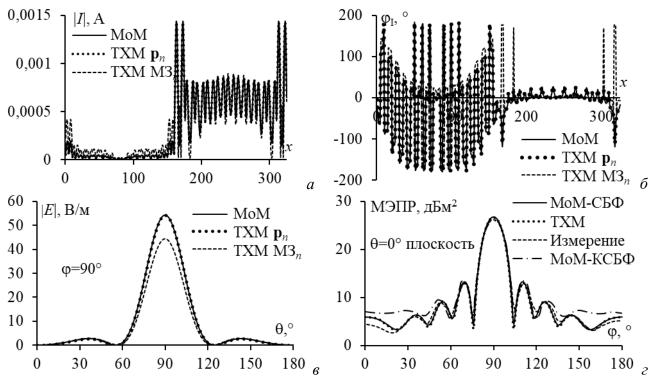


Рисунок 4.1 — Зависимости |I| (a), φ_I (δ) от номера сегмента, поле рассеяния, $\theta^{\text{пад}} = \varphi^{\text{пад}} = 90^{\circ}$ (ϵ) и МЭПР (ϵ) прямоугольной ПС. КСБФ — кусочно-синусоидальная базисная функция

Поскольку анализ влияния всех мод увеличивает вычислительные затраты, для уменьшения времени вычисления выделены наиболее значимые моды по порогу $T_{\rm p}$, а памяти — моды с наибольшими ${\bf i}_n$ и ${\rm M3}_n$ по порогам $T_{\rm I}$ и $T_{\rm M3}$. При верификации на пластине и УО сравнивались МЭПР, полученные по ТХМ, измерению и другим численным методам (рисунок 4.2). Также сравнены вычислительные затраты для расчёта тока и рассеянного поля при различных порогах (таблица 4.1), показавшие корректность предложенного алгоритма и снижение вычислительных затрат.

Таблица 4.1 – Вычислительные затраты/уменьшение для анализа рассеивателей по ТХМ

Tuotinga 111 Bis interintensisse outputsis juicinsmente Atin unumou puedensarenten ito 1111/1									
Тип рассе- ивателя	φ ^{пад} ,°	$ heta^{ ext{nad}},$ °	Время, с			Память, МБ			
			$T_{\rm I}=T_{\rm M3}=0,$	$T_{\rm I}=T_{\rm M3}=0,$	$T_{\rm I} = T_{\rm M3} = 0.01$	$T_{\rm I} = T_{\rm M3} = 0$,	$T_{\rm I} = T_{\rm M3} = 0$,	$T_{\rm I}=T_{\rm M3}=0,01,$	
			$T_{\mathbf{p}}=0$	$T_{\mathbf{p}} = 0,1$	$T_{\mathbf{p}} = 0,1$	$T_{\mathbf{p}}=0$	$T_{\mathbf{p}} = 0,1$	$T_{\mathbf{p}} = 0,1$	
Прямоу-	0–180°	90°	667	21/ 32	20/ <u>33</u>	25	20/1,25	10/ <u>2,5</u>	
гольная ПС	90°	0–180°	670	19/ <u>33</u>	19/ <u>33</u>	24	17/1,4	11/ 2,2	
ДУО1	0°	-90-90°	231	7/33	6/ <u>38</u>	13	6/2,2	2/ <u>6,5</u>	
ДУО1	-180-0°	90°	227	7/32	7/32	12	7/ 1,7	3/4	
ДУО2	-90-90°	90°	24138	679/ 35	651/ 37	431	279/1,54	168/ 2,5	
ДУО3	_90_90°	90°	935064	6257/149	5824/160	3943	2521/ 1,56	1443/ 2,7	
ТТУО	45°	0–90°	478584	20226/ 23	18331/ <u>26</u>	4133	3043/ 1,36	2504/ <u>1,7</u>	

В подразделе 4.2 представлен алгоритм ускорения отслеживания характеристических мод. Он состоит из 3-х этапов: *Предварительная обработка* определяет частотную зависимость собственного значения λ_n (или характеристического угла α_n , или $M3_n$) с большим шагом по частоте Δf для ускорения. *Поиск особенностей* выявляет частотные точки с ненормальными изменениями λ_n . *Дополнительная обработка* точно отслеживает моды на этих частотах с уменьшением Δf .

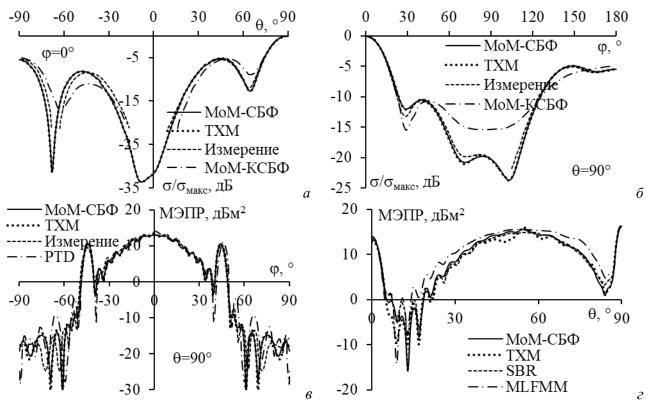


Рисунок 4.2 – Измеренные и вычисленные МЭПР для ДУО₁ (*a*, *б*), ДУО₂ (*в*) и ТТУО (*г*). PTD – physical theory of diffraction, SBR – shooting and bouncing rays, MLFMM – multilevel fast multipole method

Для проверки правильности и эффективности алгоритма отслежены моды патч-антенны из ПС. Частотные зависимости α_n до и после отслеживания представлены на рисунке 4.3. Предварительная обработка выполнялась с Δf =20 МГц, а особые точки отслеживались с Δf =1 МГц. После этого при f=2,78 ГГц между модами 1 и 3 обнаружена особая точка. Она дополнительно проверена с меньшим Δf (0,01 МГц). По коэффициентам корреляции подтверждено, что в ней нет ошибки отслеживания, что демонстрирует надёжность алгоритма.

Уменьшение времени отслеживания алгоритма показано на сравнении результатов: его и исходного (таблица 4.2). Видно, что предлагаемый алгоритм требует значительно меньше времени для отслеживания мод простых и сложных структур.

Таблица 4.2 – Время отслеживания мод для различных структур

таолица 4.2 — Времи отележиваний мод дли различных структур										
Струк- тура	Число сег- ментов	Число	Частотной	Исходный а	алгоритм, с	Предпола-	Уско-			
		отслежи- ваемых мод	диапазон, МГц	∆ <i>f</i> =0,01 МГц	∆ <i>f</i> =1 МГц	гаемый алгоритм, с	рение			
Диполь	10	8	50-1000	597	*	19	31			
Кресто- образные провода	25	8	50–300	860	8,68	2,6	3			
Патч антенна	158	9	2000–3000	6407	64,1	5,9	10			
Рупорная антенна	1062	23	700–1300	120801	1208	132	9			

*: неправильное отслеживание мод

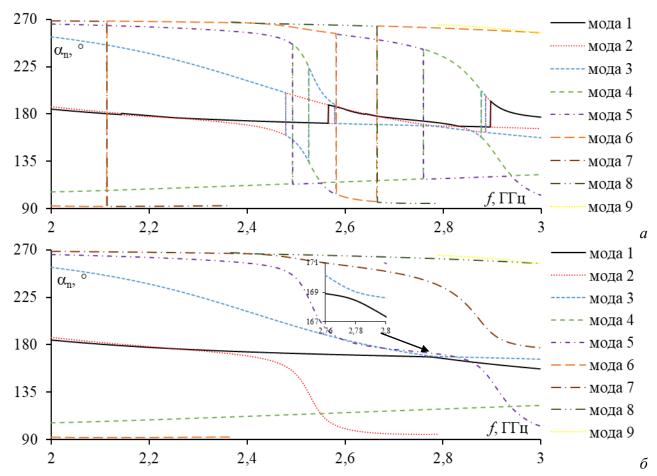


Рисунок 4.3 – Частотные зависимости α_n до (a) и после (δ) отслеживания мод патч-антенны

ЗАКЛЮЧЕНИЕ

Итоги работы

- 1. Предложен алгоритм, основанный на АОТС, для синтеза разреженных рассеивателей. Он упрощает их изготовление и позволяет численное моделирование с низкими вычислительными затратами. Эффективность АОТС подтверждена на различных типах структур из ПС с разными размерами и на разных частотах.
- 2. Проанализированы основные недостатки МТАОТС, а также предложены два алгоритма для их устранения, примененных для разных рассеивателей: прямоугольной ПС, ДУО и КТУО.
- 3. Синтез разреженных рассеивателей из ПС впервые экспериментально проверен на типовых конструкциях: прямоугольная, ДУО, ТТУО и КТУО. Характеристики рассеяния по численному моделированию и измерениям, демонстрируют высокую степень совпадения. Измерения показали хорошее согласование характеристик рассеяния разреженных структур и исходных ПС. При этом снижение массы составило 1,82 раза для квадратной структуры, 1,7 раза для ДУО и 1,51 раза для ТТУО и КТУО из ПС.
- 4. Подтверждены корректность и эффективность предложенного алгоритма при определении значимых мод, а также его способность существенно снизить вычислительные затраты анализа по ТХМ.

5. Предложен усовершенствованный алгоритм отслеживания характеристических мод, направленный на повышение точности и сокращение времени отслеживания мод по всему диапазону.

Рекомендации. АОТС и МТАОТС могут эффективно применяться для синтеза разреженных структур из ПС без значительных технических трудностей. Они подходят для использования в образовательных целях, в научных исследованиях, а также могут служить основой для дальнейшей разработки рассеивателей по современным требованиям. Перед применением АОТС и МТАОТС следует провести точное моделирование характеристик исходной ПС. Для создания разреженных рассеивателей необходимо выбрать соответствующий ДУЭС и T. Для моделирования проводных антенн и рассеивателей надо задать значения $T_{\rm I}$, $T_{\rm MS}$, $T_{\rm p}$, которые влияют не только на вычислительные затраты, но и точность результатов.

Перспективы дальнейшей разработки темы. Исследование И разработка алгоритмов, основанных на AOTC. новых ДЛЯ разреженных экранов из ПС, которые будут сохранять необходимые характеристики. Полученные результаты открывают возможности для широкого предложенного TXM, алгоритма В особенно проектирования и оптимизации сложных антенн и рассеивателей. МТАОТС можно адаптировать и расширить для других вариантов АОТС, что позволит значительно повысить их практическую применимость.

СПИСОК ОСНОВНЫХ ПУБЛИКАЦИЙ Статьи в изданиях из перечня ВАК (2)

- 1. **Данг Т.Ф.** Применение теории характеристических мод и метода моментов к анализу крестообразного проводного рассеивателя // Доклады ТУСУР. -2025. T. 28, № 1. C. 14-19.
- 2. **Данг Т.Ф.** Уголковый отражатель и основные методы моделирования электромагнитного рассеяния: обзор за 10 лет // Системы управления, связи и безопасности. -2025. №. 3. С. 35-120.

Статья в журнале, индексируемом WoS и Scopus, из Q2 (1)

3. **Dang T.P.** Generation of sparse antennas and scatterers based on optimal current grid approximation / T.P. Dang, M.T. Nguyen, A.F. Alhaj Hasan, T.R. Gazizov // Algorithms. – 2025. – Vol. 18. – No. 3. – P. 171.

Статьи в журналах, индексируемых WoS и Scopus (2)

- 4. **Dang T.P.** Complex wire grid antennas: determining the optimal source location using characteristic mode analysis / T.P. Dang, A.F. Alhaj Hasan, T.R. Gazizov // Scientia Iranica. DOI: 10.24200/sci.2025.66158.9884.
- 5. **Dang T.P.** Improved CMA tracking mode algorithm based on eigenvalue, eigenvector, and frequency adjustment // Russian Physics Journal. 2025. Vol. 68. P. 773–783.

Доклады в трудах конференций, индексируемых WoS и Scopus (12)

6. **Dang T.P.** MoM scattering analysis of dihedral corner reflector: TALGAT verification / **T.P. Dang**, A.F.A. Hasan, T.R. Gazizov // 2024 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO). – Vyborg (Russian), 2024. – P. 1–5.

- 7. **Dang T.P.** Scattering from a perfectly conducting plate using wire-grid and MoM with pulse basis functions / A.F.A. Hasan, **T.P. Dang**, T.R. Gazizov // 2024 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO). Vyborg (Russian), 2024. P. 1–6.
- 8. **Dang T.P.** Analyzing the wire scatterer using the method of moments with the step basis functions / **T.P. Dang**, A.F.A. Hasan, T.R. Gazizov // 2024 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF). St. Petersburg (Russian), 2024. P. 1–8.
- 9. **Dang T.P.** Wire grid scatterer modeling: TALGAT verification / **T.P. Dang**, A.F.A. Hasan, T.R. Gazizov // 2024 International Russian Automation Conference (RusAutoCon). Sochi (Russian), 2024. P. 443–448.
- 10. **Dang T.P.** Performance comparison of correlation coefficient based trackers for characteristic mode analysis / **T.P. Dang**, A.F.A. Hasan, T.R. Gazizov // 2024 International Conference on Actual Problems of Electron Devices Engineering (APEDE). Saratov (Russian), 2024. P. 102–106.
- 11. **Dang T.P.** MoM-based performance analysis of different corner reflector scatterers using wire grid / **T.P. Dang**, A.F.A. Hasan, T.R. Gazizov // 2024 International Conference on Actual Problems of Electron Devices Engineering (APEDE). Saratov (Russian), 2024. P. 113–116.
- 12. **Dang T.P**. Notes on the analysis of crossed wire scatterers with junction by a fast MoM-based code with step basis functions. / **T.P. Dang**, A.F.A. Hasan, T.R. Gazizov // 2024 8th International conference on information, control, and communication technologies (ICCT-2024). Vladikavkaz (Russian), 2024.
- 13. **Dang T.P.** Triangular trihedral corner reflector analysis using wire-grid and MoM with pulse basis functions / **T.P. Dang**, A.F.A. Hasan, T.R. Gazizov // 2024 International Ural Conference on Electrical Power Engineering (UralCon). Magnitogorsk (Russian), 2024. P. 108–113.
- 14. **Dang T.P.** Verifying the results of thin dielectric plate analysis using MoM-SIE with approximate integral solution / **T.P. Dang**, A.F.A. Hasan, T.R. Gazizov // 2024 International Ural Conference on Electrical Power Engineering (UralCon). Magnitogorsk (Russian), 2024. P. 389–394.
- 15. **Dang T.P.** Square trihedral corner reflector analysis using wire-grid and MoM with pulse basis functions / **T.P. Dang**, A.F.A. Hasan, T.R. Gazizov // Antennas Design and Measurement International Conference 2024 (ADMInC'2024). Saint-Petersburg (Russian), 2024. P. 12–15.
- 16. **Dang T.P**. Mathematical model, algorithm and computer code for analyzing thin dielectric plate scatterers based on surface equivalent equation and method of moments / **T.P. Dang**, A.F.A. Hasan, T.R. Gazizov // Antennas Design and Measurement International Conference 2024 (ADMInC'2024). Saint-Petersburg (Russian), 2024. P. 7-11.
- 17. **Dang T.P.** Comparative analysis of wire grid scatterers with different cells using MoM and pulse basis functions / **T.P. Dang**, A.F.A. Hasan, T.R. Gazizov // 2024 International Conference «Engineering Management of Communication and Technology» (EMCTECH). Vienna (Austria), 2024. P. 1–6.

Доклады в трудах отечественных конференций (9)

- 18. **Данг Т.Ф.** Возможность улучшения характеристик направленности антенны в условиях возрастающих требований радиоэлектронной борьбы // XXIX Международной научно-практической конференции СИБРЕСУРС-29-2023, Томск, Россия. 2023. С. 30–33.
- 19. **Данг Т.Ф.** Графический интерфейс программы для оценки излучаемой эмиссии от печатных плат с модальным резервированием / **Т.Ф. Данг**, А.Ф. Алхадж Хасан // XXIX Международная научно-техническая конференция студентов, аспирантов и молодых учёных «Научная сессия ТУСУР 2024», Томск, Россия. 2024. С. 42–46.
- 20. Данг Т.Ф. Анализ рассеивающих структур методом моментов с теорией характеристических мод / Т.Ф. Данг, А.Ф. Алхадж Хасан // XIII Всероссийская молодёжная научно-практическая конференция "Нанотехнологии. Информация. Радиотехника", Омск, Россия. 2024. С. 196–198.
- 21. **Данг Т.Ф.** Анализ рассеивающих структур методом моментов с теорией характеристических мод: рассеянное поле прямого проводника / **Т.Ф. Данг**, А.Ф. Алхадж Хасан // Обмен опытом в области создания сверхширокополосных радиоэлектронных систем: Материалы X Всероссийской научно-технической конференции, Омск, Россия. 2024. С. 62–70.
- 22. **Данг Т.Ф.** Верификация моделирования дипольного рассеивателя в системе TALGAT / **Т.Ф. Данг**, А.Ф. Алхадж Хасан // XXI Международной конференции студентов, аспирантов и молодых ученых «Перспективы развития фундаментальных наук», Томск, Россия. 2024. С. 33–35.
- 23. Данг Т.Ф. Анализ квадратного трёхгранного уголкового отражателя с помощью проводной сетки и МоМ с импульсными базисными функциями / Т.Ф. Данг, А.Ф. Алхадж Хасан // Всероссийская научно-техническая конференция «Антенны и распространение радиоволн», Санкт-Петербург, Россия. 2024. С. 1–5.
- 24. Данг Т.Ф. Математическая алгоритмическая модель для тонкого рассеивающего диэлектрика на основе поверхностного эквивалентного уравнения / Т.Ф. Данг, А.Ф. Алхадж Хасан // Всероссийская научнотехническая конференция «Антенны и распространение радиоволн», Санкт-Петербург, Россия. 2024. С. 1–5.
- 25. **Dang T.P.** Notes on the analysis of crossed wire scatterers with junction by a fast MoM-based code with step basis functions / **T.P. Dang**, A.F. Alhaj Hasan // VIII Международная конференция "Информационные технологии и технические средства управления" (ICCT-2024), Владикавказ, Россия. 2024. С. 79–83.
- 26. Данг Т.Ф. Анализ антенн с использованием характеристических мод и проводной сетки / Т.Ф. Данг, А.Ф. Алхадж Хасан // Международная научно-практическая конференция «Электронные средства и системы управления», Томск, Россия. 2024. С. 13–15.

Свидетельство о регистрации программы для ЭВМ (5)

27. Свидетельство о государственной регистрации программы для ЭВМ № 2024681564. Программа для анализа проводных рассеивателей методом

- моментов с разными базисными функциями / **Данг. Т.Ф.**; заявл. 04.07.2024; зарег. 11.09.2024.
- 28. Свидетельство о государственной регистрации программы для ЭВМ № 2024667263. Программа для анализа рассеивающих проводно-сеточных структур методом моментов / **Данг. Т.Ф.**; заявл. 11.07.2024; зарег. 23.07.2024.
- 29. Свидетельство о государственной регистрации программы для ЭВМ № 2024683883. Программа для анализа антенных и рассеивающих проводных структур с использованием метода моментов и теории характеристических мод / Данг. Т.Ф., А. Алхадж Хасан; заявл. 11.09.2024; зарег. 14.10.2024.
- 30. Свидетельство о государственной регистрации программы для ЭВМ № 2024683884. Программа для анализа антенных и рассеивающих структур с диэлектрическими материалами на основе метода моментов / Данг. Т.Ф., А. Алхадж Хасан; заявл. 21.09.2024; зарег. 14.10.2024.
- 31. Свидетельство о государственной регистрации программы для ЭВМ № 2024683885. Программа для отслеживания мод при использовании метода моментов и теории характеристических мод для анализа антенных и рассеивающих проводных структур / Данг. Т.Ф., А. Алхадж Хасан; заявл. 21.09.2024; зарег. 14.10.2024.

Тираж 100 экз. Заказ № 100 Томский государственный университет систем управления и радиоэлектроники. 634050, г. Томск, пр. Ленина, 40 Тел. (3822) 533018