На правах рукописи

Невежин Виталий Николаевич

Влияние водных растворов на электрические характеристики линий передачи в широких диапазонах частот и температур

Специальность 2.2.14 — Антенны, СВЧ-устройства и их технологии

Автореферат

диссертации на соискание учёной степени кандидата технических наук

Работа выполнена в федеральном государственном автономном образовательном учреждении высшего образования «Томский государственный университет систем управления и радиоэлектроники» (ТУСУР)

Научный руководитель – Комнатнов Максим Евгеньевич,

доктор технических наук, доцент кафедры телевидения и управления ТУСУР

Официальные оппоненты – Насыбуллин Айдар Ревкатович,

доктор технических наук, доцент, профессор кафедры конструирования и технологии производства электронных средств ФГБОУ ВО «Казанский национальный исследовательский технический университет им. А. Н. Туполева – КАИ»;

Кочеткова Татьяна Дмитриевна,

кандидат физико-математических наук, доцент, доцент кафедры радиоэлектроники ФГАОУ ВО «Национальный исследовательский Томский государственный университет»

Ведущая организация – ФГБОУ ВО «Воронежский государственный технический университет»

Защита состоится 23 декабря 2025 г. в 9 часов 00 минут на заседании диссертационного совета 24.2.415.01, созданного на базе Томского государственного университета систем управления и радиоэлектроники, по адресу: 634050, г. Томск, ул. Ленина, 40, ауд. 201.

С диссертацией можно ознакомиться в библиотеке и на сайте ТУСУРа https://postgraduate.tusur.ru/urls/jts5hl7p

Автореферат разослан «»	2025 г	٦.
-------------------------	--------	----

Учёный секретарь диссертационного совета 24.2.415.01 доктор физико-математических наук HIS

Мандель А.Е.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы

Современные радиоэлектронные средства (РЭС) занимают все большее место в жизни человека. Они находят применение в самых разнообразных областях, включая бытовое, промышленное, медицинское и специальное назначения. Обеспечение устойчивой и бесперебойной связи, контроля и управления различными критичными устройствами предъявляет все более жесткие требования к надежности и безопасности при эксплуатации РЭС. Влияние внешних климатических (температура, влажность воздуха и пр.) факторов на РЭС может сопровождаться ускоренным старением, изменением электрических параметров и характеристик РЭС и пр., что снижает их надежность и повышает восприимчивость к дестабилизирующим воздействиям.

Влажность может различно влиять на материалы, из которых состоят элементы и устройства РЭС. Так, воздействие высокой или низкой влажности воздуха на резину и полимеры сопровождается диффузией воды, а воздействие температуры окружающей среды на материал может значительно повлиять на процессы диффузии, что может сопровождаться разной скоростью изменения электрических и механических свойств материала. Низкая влажность воздуха приводит к растрескиванию и хрупкости некоторых полимеров, а высокая – значительно усиливает процесс конденсации и фазовый переход воды из газообразного в жидкое агрегатное состояние с образованием пленок и капель воды, которые могут существенно увеличиться на поверхности материала за короткий период времени. Рост толщины пленки воды вследствие повышенной влажности воздуха различно влияет на электрические характеристики РЭС, что в некоторых случаях критично, особенно для высокочастотных аналоговых и быстродействующих цифровых схем. Кроме того, появление пленки воды может повлечь коррозию металлических частей в местах пайки компонентов, механических соединений и пр., что может вызвать необратимый отказ или повреждение РЭС. Также пленка воды на поверхности РЭС может быть благоприятной средой для размножения биологических объектов (БО), жизнедеятельность которых может привести к изменению электрических характеристик РЭС, что может повлечь изменения характеристик компонентов РЭС или его отказ.

Эксплуатация РЭС в загрязненной среде и с повышенной влажностью воздуха может привести к образованию жидкого раствора на поверхности РЭС, что повлияет на его электрические характеристики, а высыхание воды в растворе приведет к образованию твердого вещества на поверхности РЭС. При этом электрические характеристики РЭС при данных видах воздействия могут меняться из-за изменения электрофизических параметров водных растворов на поверхности РЭС, вследствие перехода из одного состояния в другое. Данные явления слабо изучены, особенно для высокочастотных аналоговых и быстродействующих цифровых схем, но их учет актуален, особенно для критичных РЭС, проектируемых для эксплуатации в сложных загрязненных климатических условиях. Таким образом, разработка моделей и методик

оценки влияния водных растворов на электрические характеристики элементов и устройств РЭС в широких диапазонах частот и температур весьма актуальна.

Степень разработанности темы. Существенный вклад в развитие моделей воды и полярных жидкостей внесли Р. Debye, К Cole. и R. Cole, а в теории взаимодействия электромагнитных волн с водой и льдом -В.Г. Артемов, U. Kaatze, V. Uhlendorf и др. Измерением электрофизических параметров водных растворов занимаются В.А. Журавлев, А.Е. Луньков, Д.Г. Ковалев, В.И. Сусляев и др. Исследованием влияния процессов конденсации воды на электрические параметры РЭС занимаются H. Conseil-Gudla, R. Ambat и др. Оценкой влияния химического состава органических загрязниэлектрофизические параметры воде на РЭС О. Korostynska, А. Mason и др., а электрофизических параметров органических жидкостей – К. Seungwan, M. Harutyun, A. Kandwal, Т. Igbe и др. Изменения электрофизических параметров жидкостей с температурой исследуют A.A. Abduljabar, H. Hamzah, A. Porch и др. Разработкой методик эксплуатации различных РЭС при повышенной влажности занимаются J.J. Huselstein, F. Richardeau, M.T. Zarifi и др. Коррозийный процесс из-за воздействия температуры и влажности, исследуют Z. Jiang, X. Liu, D. Minzari и др. Обледенение различных деталей и узлов РЭС под воздействием температуры и влажности исследуют N.O. Renno, A. Arbor, E. Madi, K. Роре и др. Между тем мало исследованы влияния температуры и влаги, когда появляется пленка воды или слой льда с заданным химическим составом на поверхности элементов и СВЧ-устройств, поскольку электрофизические параметры водного раствора могут существенно отличаться из-за условий, в которых образуется конденсат.

Цель работы – разработать модель и методику оценки влияния водных растворов на электрические характеристики линий передачи в широких диапазонах частот и температур. Для этого надо решить следующие **задачи**:

- 1. Разработать модель для оценки частотных зависимостей электропроводности водных растворов с разным химическим составом, в широком диапазоне температур.
- 2. Предложить методику анализа водных растворов с разным химическим составом, размещенных в коаксиальной камере при воздействии на них температуры.
- 3. Оценить по предложенной методике влияние водных растворов с разным химическим составом и агрегатным состоянием на элементы матрицы рассеяния (*S*-параметры) микрополосковой и копланарной линий передачи.

Научная новизна

1. Создана модель для оценки электропроводности воды, отличающаяся учетом положительных и отрицательных температур коаксиальной камеры с водой в контейнере и без нее на основе измеренных частотных зависимостей матриц коэффициентов рассеяния.

- 2. Разработана методика для оценки зависимости химического состава водных растворов от температуры окружающей среды, отличающаяся использованием измеренных матриц рассеяния коаксиальной камеры с образцами в контейнере и без, с наглядной визуализацией измеренных значений.
- 3. Разработана методика для оценки влияния температуры и влажности на электрические характеристики микрополосковой и копланарной линий передачи, отличающаяся использованием модели однородной пленки воды и слоя льда для имитации влияния климатического воздействия на РЭС.

Теоретическая значимость

- 1. Исследовано влияние температуры и химического состава на частотнозависимые матрицы рассеяния водных растворов.
- 2. Предложен нетрадиционный подход к оценке климатического воздействия на электрические характеристики линий передачи, основанный на электрических и геометрических параметрах конденсата.
- 3. Доказано наличие связи между химическим составом раствора и температурой с использованием матриц рассеяния и метода главных компонент.
- 4. Проведена модернизация существующей методики вычисления вносимых потерь материалов при температурном воздействии.

Практическая значимость

- 1. Разработаны практические рекомендации для измерения матриц рассеяния коаксиальной камеры при изменении температуры.
- 2. Показаны перспективы использования водных растворов для имитации климатического воздействия на линии передачи печатные платы (ПП) РЭС.
- 3. Разработаны практические рекомендации для оценки влияния влаги и температуры на электрические характеристики микрополосковых и копланарных линий передачи.
- 4. Представлены рекомендации по дальнейшему совершенствованию существующих методик для оценки климатического воздействия.
- 5. Результаты использованы в 4 НИР и учебном процессе ТУСУРа (три акта внедрения).

Положения, выносимые на защиту

- 1. Созданная модель для оценки электропроводности водных растворов позволяет, на основе измеренных S-параметров коаксиальной камеры с размещенным внутри контейнера раствором и без него, оценить с относительной разницей значений не более 10% электропроводность растворов с разным химическим составом в диапазонах частот от $10~\text{M}\Gamma\text{ц}$ до $6~\Gamma\Gamma\text{ц}$ и температур от минус 50~д0 100°C .
- 2. Разработанная методика оценки зависимости химического состава водных растворов от температуры окружающей среды позволяет выявить изменения вносимых потерь для водного раствора без примесей при изменении температуры от минус 50 до 50° C.
- 3. Разработанная методика оценки влияния температуры и влаги на микрополосковую линию передачи позволяет определить изменение её гранич-

ной частоты до 6 $\Gamma\Gamma$ ц вследствие воздействия на неё температуры и влаги и при образовании на ней однородной пленки воды.

Методология и методы исследования. В работе применены аналитические методы, метод конечных элементов, метод конечных разностей во временной области, метод главных компонент, лабораторные эксперименты.

Достоверность результатов подтверждена их согласованностью с результатами из других источников, апробацией на конференциях и публикацией в рецензируемых журналах.

Использование результатов

- 1. НИР «Комплекс фундаментальных исследований по электромагнитной совместимости» в рамках конкурса научных проектов, выполняемых коллективами исследовательских центров и (или) научных лабораторий образовательных организаций высшего образования. Научно-исследовательская лаборатория фундаментальных исследований по электромагнитной совместимости, проект FEWM-2020-0041, 2020–2021 гг.
- 2. НИР «Влияние температуры и влажности на взаимодействие рецепторов и источников электромагнитного излучения вблизи произвольно расположенных и частично замкнутых электромагнитных барьеров», грант РНФ №19-79-10162, 2020—2021 гг.
- 3. НИР «Влияние температуры и влажности на взаимодействие рецепторов и источников электромагнитного излучения вблизи произвольно расположенных и частично замкнутых электромагнитных барьеров», грант РНФ №19-79-10162-П, 2022—2024 гг.
- 4. НИР «Методология автоматизированного проектирования радиоэлектронной аппаратуры, функционирующей в условиях деструктивных воздействий» Проект FEWM-2024-0005, 2024–2025 гг.
- 5. Учебный процесс радиотехнического факультета ТУСУРа (бакалавриат, магистратура).

Апробация результатов. Результаты докладывались на Всерос. научтехн. конф. студентов, аспирантов и молодых ученых «Научная сессия ТУСУР» (Томск, 2021), Межд. науч.-практ. конф. «Электронные средства и системы управления» (Томск, 2021), Int. conf. of young specialists on micro/nanotechnologies and electron devices (Эрлагол (Алтай), 2021 и 2024), Ural-Siberian conf. on biomedical engineering, radioelectronics and information technology (Екатеринбург, 2022), Int. Ural conf. on electrical power engineering (Екатеринбург, 2022), Radiation and scattering of electromagnetic waves (Дивноморское, 2023).

Публикации. Результаты исследований опубликованы в 10 работах (1 без соавторов): 2 статьи в журналах из перечня ВАК; 5 докладов в трудах конференций, индексируемых WoS и Scopus; 3 доклада в трудах отечественных конференций.

Личный вклад. Все результаты работы получены автором лично или при его непосредственном участии. Основной вклад автора заключается в подготовке и проведении экспериментов, а также их последующем описании.

Структура и объём диссертации. В диссертацию входят введение, 3 главы, заключение, список литературы из 117 наименований, 2 приложения. Объём — 130 с., в т.ч. 62 рисунка и 4 таблицы.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

1. Обзор методов оценки влияния температуры и влаги на электрические характеристики радиоэлектронных средств

В разделе 1.1 обоснована необходимость учета влияния температуры и влаги на элементы и устройства РЭС. В разделе 1.2 представлена оценка воздействия температуры и влажности на элементы и устройства РЭС. В разделе 1.3 показано влияние химических и биологических компонент жидкости и органических материалов на электрические характеристики РЭС. В разделе 1.4 представлены устройства, используемые для измерения электрофизических параметров растворов. В разделе 1.5 сформулированы цель и задачи работы.

2. Методика оценки электропроводности и вносимых потерь водных растворов при изменении температуры

В разделе 2.1 разработаны модель и алгоритм для вычисления электропроводности водного раствора в коаксиальной камере по измеренным S-параметрам при разной температуре. Для этого измерены частотные зависимости S-параметров коаксиальной камеры (рисунок 2.1a) с водным раство-

ром в контейнере и без него при температурах от минус 50 до 100°С. Контейнеры имели цилиндрическую форму объемом 5 и 10 мл и выполнены из тефлона ($\varepsilon_r = 2,1$) с равными толщинами (d = 2 мм) стенок и крышки (рисунок 2.1δ).

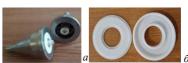


Рисунок 2.1 — Коаксиальная камера (a) с контейнером объемом 5 мл (δ)

Измерения проводились установкой (рисунок 2.2a) содержащей векторный анализатор цепей (ВАЦ) Rohde & Schwarz ZVA 40 I, камеру «теплохолод» ESPEC SU- $262\ 2$ и коаксиальную камеру 3 с верхней граничной ча-

стотой 12 ГГц. Установка собрана по схеме (рисунок 2.26), содержащей ВАЦ I, внешний и внутренний 2 проводники коаксиальной камеры, с размещенным внутри нее контейнером 3, заполненным водой 4. Коаксиальная камера размещалась внутри камеры «теплохолод» 5. Измерения частотных зависимостей S-параметров коаксиальной ка-

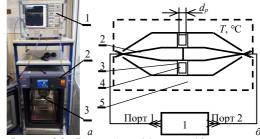


Рисунок 2.2 — Внешний вид (a) и схема (б) установки для измерения S-параметров коаксиальной камеры с водой при изменении температуры

меры с водой проводились ВАЦ каждые 30 с, в диапазоне частот от 10 МГц до 12 ГГц. Температура внутри камеры «тепло-холод» изменялась в двух

диапазонах: 1 – от 25 до 100° С и 2 – от 25 до минус 50° С. Стенки контейнера герметизировались в местах стыка для устранения протекания воды под воздействием высоких температур.

Измерения S-параметров коаксиальной камеры с водой в контейнере в диапазонах частот от 10 МГц до 12 ГГц и температур от минус 50 до 100°С, показали, что температура существенно влияет на частотные зависимости $|S_{21}|$ параметров воды при ее нагреве до 100°С и охлаждении до минус 50°С (рисунок 2.3).

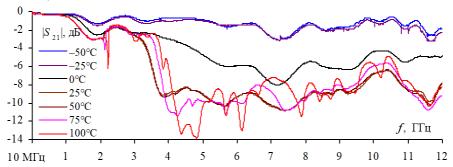


Рисунок 2.3 – Частотные зависимости $|S_{21}|$ коаксиальной камеры с водой в контейнере при изменении их температуры от минус 50°C до 100°C

Созданы геометрические модели коаксиальной камеры с размещенной водой и льдом в контейнере и вычислены методом конечных элементов (МКЭ) частотные зависимости $|S_{21}|$. Из сравнения измеренных и вычисленных значений видно (рисунок 2.4), что частотные зависимости $|S_{21}|$ коаксиальной камеры совпадают, с небольшими отклонениями ($\Delta |S_{21}| \le 1$ дБ), до частоты 6 ГГц, а свыше 6 ГГц они увеличиваются до 4 дБ, для воды, тогда как для льда достигают 1 дБ до 12 ГГц.

Рисунок 2.4 — Измеренные (—) и вычисленные (- -) с использованием моделей воды и льда частотные зависимости $|S_{21}|$ коаксиальной камеры с контейнером заполненным водой при 25°C (a) и льдом при минус 50°C (δ)

Разработан алгоритм для вычисления частотных зависимостей вносимых потерь (ВП) и электропроводности (σ) на основе измеренных S-параметров водных растворов в коаксиальной камере при разных значениях их темпера-

туры, включающий: 1. Подготовку водного раствора (дистиллированная, морская или иная вода присущая географическому положению, а также вода с разным химическим составом). 2. Калибровку ВАЦ с термостабильными кабелями в камере «тепло-холод». 3. Размещение коаксиальной камеры внутри камеры «тепло-холод» и подключение её термостабильными кабелями к ВАЦ. 4. Измерение S-параметров пустой коаксиальной камеры ($|S_{21}U|$) при изменении температуры внутри камеры «тепло-холод» в диапазонах заданных температур: 1 – от положительных до отрицательных; 2 – от отрицательных до положительных. 5. Установку контейнера внутрь коаксиальной камеры и повтор измерений S-параметров ($|S_{21\Pi K}|$) коаксиальной камеры с полым контейнером при изменении температуры внутри камеры «тепло-холод» для двух диапазонов температур. 6. Заполнение контейнера водным раствором, закрытие и проклейка его стенок для устранения протекания, а также проверка его герметичности. 7. Установка контейнера с водным раствором внутрь коаксиальной камеры и измерение S-параметров ($|S_{213K}|$) коаксиальной камеры при изменении температуры внутри камеры «тепло-холод» для двух диапазонов температур. 8. Вычисление ВП и о водного раствора, используя измеренные параметры $|S_{21U}|$, $|S_{21\Pi K}|$ и $|S_{213K}|$ для заданных температур.

Разработана модель для вычисления σ воды на основе измеренных S-параметров, отличающаяся вычислением $B\Pi$ воды в коаксиальной камере

при изменении ее температуры. Выражение для вычисления σ воды (2.1) включает характеристическое сопротивление коаксиальной камеры (Z), толщину раствора в контейнере (d)

$$\sigma = \left(\left| \frac{S_{21\,\Pi K}}{S_{21\,3K}} \right| - 1 \right) \frac{2}{Zd} \quad (2.1)$$

и параметры коаксиальной камеры с пустым ($|S_{21\Pi K}|$) и заполненным водой контейнером ($|S_{213K}|$). Достоверность и адекватность модели для оценки σ воды при изменении температуры подтверждается измеренными S-параметрами в разные дни (рисунок 2.5), при разных температурах воды из одного источника. При этом, $\Delta |S_{21}| < 4.4$ дБ.

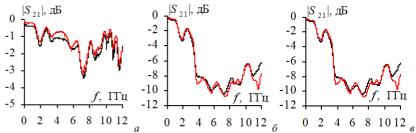


Рисунок 2.5 – Измеренные в один (–) и другой (–) день частотные зависимости $|S_{21}|$ коаксиальной камеры с водой при температурах минус 50 (*a*), 25 (*б*) и 100 (*в*) $^{\circ}$ С

Выявлено, что с ростом частоты ВП повышаются до 10 дБ при положительных температурах, а при отрицательных не превышают 3 дБ, в диапазоне частот до 12 ГГц. Используя измеренные частотные зависимости S-параметров пустой коаксиальной камеры ($|S_{21}U|$) и камеры с полым ($|S_{21}\Pi K|$)

и заполненным раствором контейнером ($|S_{213K}|$), можно по (2.1) вычислить σ раствора при разных температурах (рисунок 2.6).

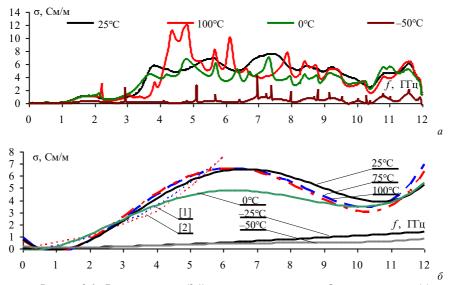
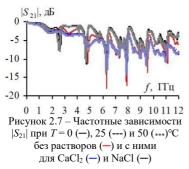


Рисунок 2.6 – Вычисленные по (2.1) частотные зависимости σ без аппроксимации (a) и с ней (δ) при изменении температуры воды в контейнере от -50 до 100 °C

Разница с известными значениями σ в диапазоне частот до 6 ГГц составляет 1 См/м в диапазоне температур от 25 до 100°С и не превышает 0,5 См/м при отрицательных (минус 50°С) температурах, а при положительных (0°С) — 1,8 См/м. Использование метода FSV показало хорошую сходимость полученных результатов σ с их известными значениями в диапазоне частот до 6 ГГц. Кроме того, вычисленные и измеренные значения частотных зависимостей $|S_{21}|$ коаксиальной камеры с водой и льдом обладают хорошей сходимостью до частоты 6 ГГц, что является достаточным для их верификации.

В разделе 2.2 представлена методика оценки вносимых потерь водных растворов без органических материалов и с ними. Для учета влияния температуры на органические материалы: 1. Заготовлена смесь из органических материалов. 2. Измерены S-параметры коаксиальной камеры с органическим материалом в контейнере с добавлением в них заданного количества жидкого раствора и без него. 3. Вычислены $B\Pi_3$ и $B\Pi_4$ по (2.2) и (2.3) соответственно. 4. Измерены S-параметры коаксиальной камеры с различной концентрацией органических материалов в контейнерах. 5. Измерены S-параметры коаксиальной камеры с органическими материалами без и с добавлением водного раствора при изменении температуры. 6. Проанализированы полученные результаты.


^{1.} IT IS FOUNDATION. Database Summary. [Электронный ресурс]. — Режим доступа: https://itis.swiss/virtual-population/tissue-properties/database/database-summary/.

^{2.} Vidjak K. Broadband Dielectric spectroscopy with a microwave ablation antenna / K. Vidjak,

C. Hessinger, M. Cavagnaro // Sensors. – 2023. – Vol. 23, no. 5. – P. 1–21.

Через ($|S_{21IIK}|$) пустого и заполненного материалом ($|S_{213K}|$) контейнеров вычислялись ВП материала без контейнера по (2.2), а влияние на ВП концентрации жидкости в сухой смеси оценивалось по $|S_{21cvx}|$ сухой и $|S_{21влаж}|$ влажной смесей по 2.3

$$B\Pi_3 = |S_{21\,\text{IIK}}| / |S_{21\,\text{3K}}|$$
 (2.2)
 $B\Pi_4 = |S_{21\,\text{BHDE}}| / |S_{21\,\text{CVX}}|$ (2.3)

Результаты измерения частотных зависимостей $|S_{21}|$ коаксиальной камеры с разными водными растворами внутри контейнера объемом 2 мл при изменении температуры от 0 до 50°C (рисунок 2.7), показали, что в зависимости от концентрации и состава химических веществ в водных растворах, а также при изменении его температуры, разница по частоте между минимумами $|S_{21}|$ максимальна и достигает 1,04 ГГц в диапазоне частот 2-3,5 ГГц.

Наибольшее влияние на изменение частотных зависимостей $|S_{21}|$ от температуры выявлено для раствора CaCl₂ (рисунок 2.8).

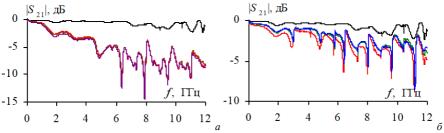


Рисунок 2.8 — Частотные зависимости $|S_{21}|$ для камеры с пустым контейнером (—), заполненным 10% раствором $CaCl_2$ в жидком (a) и твердом (б) агрегатном состояниях при температурах 50 (—), 25 (—), 0 (—), -25 (—) и -50 (—) $^{\circ}$ С

Далее вычислены и усреднены частотные зависимости ВП для чистой воды в жидком и твердом агрегатных состояниях (рисунок 2.9). Затем оценено влияние водного раствора на органические материалы, используя измеренные

при разных температурах S-параметры коаксиальной камеры с органическими материалами в контейнере.

Результаты исследования ВП при добавлении воды и растворов NaCl и CaCl₂ в полисахарид и смесь полисахарид-уголь, показали, что наибольшее влияние на ВП (до 10 дБ) вносит полисахарид при добавлении в раствор NaCl, а наименьшее – при лобавлении волы раствора CaCl₂ (до 8 дБ). Добавление воды и рас-

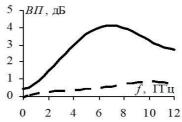


Рисунок 2.9 – Усредненные частотные зависимости ВП для чистой воды в жидком (--) и твердом (--) агрегатных состояниях

творов NaCl и CaCl₂ в смесь уголь-полисахарид увеличивает ВП до 10 дБ независимо от раствора (рисунок 2.10).

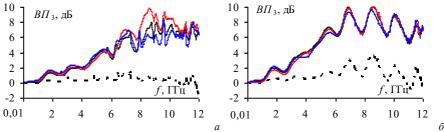


Рисунок 2.10 – Вычисленные ВП $_3$ для смесей из полисахарида без угля (a) и с углем (δ) (- - -), а также при добавлении воды (—) и растворов NaCl (—), CaCl $_2$ (—)

Выявлено, что максимальным значением ВП (до 10 дБ) обладает смесь из 20% полисахарида и 80% угля. Повышенной зависимостью ВП от температуры обладает смесь уголь-полисахарид, которая в диапазоне частот от 10 до

12 ГГц имеет максимум ВП (10 дБ) при 25°С, увеличивающиеся до 12 дБ при минус 30°С. Для смеси угольполисахарид-вода максимум ВП плавно растет до 8 дБ при 25°С, и до 9 дБ – при минус 30°С (рисунок 2.11).

В разделе 2.3 проведен анализ методом главных компонент (ГК) *S*-параметров коаксиальной камеры с водными растворами при изменении температуры, показавший, что химический состав влияет на расположение проекций измеренных частотных зависимостей *S*-параметров коаксиальной камеры при разной температуре в пространстве ГК.

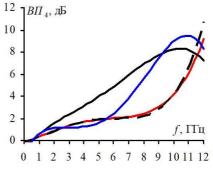


Рисунок 2.11 – Усредненные частотные зависимости ВП₄ для смесей полисахаридуголь при 30 (—) и минус 25 (——)°С, а также полисахарид-уголь-вода при 30 (—) и -25 (—)°С

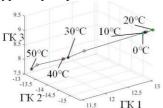


Рисунок 2.12 — Проекции |S₂₁| на пространство ГК для коаксиальной камеры с размещенным внутри контейнера раствором NaCl

Жидкость, содержащая NaCl, обладает максимальной разницей значений ГК по сравнению с другими растворами (рисунок 2.12), измеренными при помощи коаксиальной камеры, что позволило сделать вывод о том, что электрофизические характеристики данного раствора наиболее зависимы от температуры.

При отрицательной температуре разброс $|S_{21}|$ для водных растворов уменьшается, как и значение ВП. Но эти изменения для разных растворов не одинаковы, что связано с различиями их химического состава (рисунок 2.13).

3. Оценка влияния температуры и влажности на электрические характеристики линий передачи

В разделе 3.1 разработана методика анализа электрических параметров линии передачи (ЛП), покрытых пленкой воды и

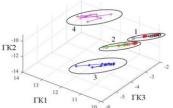


Рисунок 2.13 — Проекции |S₂₁| для пустой коаксиальной камеры (1), с размещенным в ней пустым (2) и заполненным водой контейнером в твердом (3) и жидком (4) агрегатных состояниях при помощи метода ГК

слоем льда при различных температурах. Методика включает: 1. Измерение частотных зависимостей S-параметров коаксиальной камеры с водой в контейнере в заданном диапазоне температур. 2. Вычисление частотных зависимостей ВП и σ по (2.1). 3. Создание геометрической модели поперечного сечения ЛП, покрытой слоем воды или льда, с возможностью варьирования их толщины. 4. Учет в модели электрофизических параметров металла ($\sigma_{\rm M}$) и диэлектрика ($\varepsilon_{\rm r}$, tg δ), зависящих (при необходимости) от температуры, а также пленки воды и слоя льда в виде частотных зависимостей σ , полученных по методике (п. 2.1) при разных температурах. 5. Вычисление S-параметров требуемой ЛП с использованием выбранного численного метода, при изменении толщин пленки воды или слоя льда и изменения их электрофизических параметров в соответствии с температурой. 6. Анализ частотных зависимостей S-параметров ЛП с пленкой воды и слоем льда. 7. Применение мер по ослаблению влияния температуры и влажности на S-параметры ЛП.

В разделе 3.2 показано влияние покрытия и температуры на электрические характеристики микрополосковой линии (МПЛ). Используя вышеописанную методику, оценено влияние сплошного покрытия МПЛ ($\varepsilon_{r1}=4,3$, w=3 мм, $t_1=35$ мкм, $h_1=1,6$ мм и l=60 мм $Z_e=50$ Ом) с пленкой воды толщиной $h_2=1$ мм на её S-параметры (рисунок 3.1). Использованы модели дистиллированной ($\varepsilon_r=78,4$ и $\sigma=5,6$ мкСм/м), чистой ($\varepsilon_r=78$ и $\sigma=1,59$ См/м) и морской воды ($\varepsilon_r=74$ и $\sigma=3,53$ См/м), а частотнозависимая модель воды создана на основе измеренных S-параметров и вычисленных на их основе

значений σ , используя методику, показанную выше, при $T=25^{\circ}\mathrm{C}$ и $\varepsilon_r=80$. Также использовалась частотнозависимая модель Дебая со значениями ε_r в диапазоне от 78 до 58 и σ – от 0 до 25 См/м в диапазоне частот до 12 ГГц.

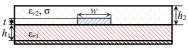


Рисунок 3.1 – Поперечное сечение МПЛ со слоем воды

Используя разработанную методику, показано влияние покрытия пленкой воды и слоем льда, а также температуры на электрические характеристики МПЛ. Видно (рисунок 3.2), что выбор электрической модели и толщины

пленки воды и слоя льда, а также их расположение на $\Pi\Pi$, оказывают существенное влияние на S-параметры $J\Pi\Pi$.

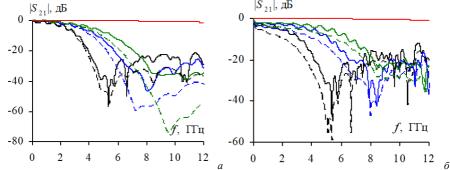


Рисунок 3.2 — Частотные зависимости $|S_{21}|$ МПЛ без (—) и с разными (— 1, — 0,5 и — 0,35 мм) толщинами пленки воды, используя модели на основе ВП (——) и Дебая (---) (a), а также модели чистой (——) и морской (---) воды (δ)

Увеличение толщины с 0,35 до 1 мм слоя воды существенно влияет на $|S_{21}|$ МПЛ, что может привести к ослаблению полезных и помеховых сигналов в ЛП на высоких частотах с изменением её частоты среза в широких диапазонах. Применение методики на этапе проектирования позволяет оценить изменение параметров сигналов РЭС в широких диапазонах частот, температур, влажности воздуха, а также химического состава окружающей среды. По результатам применения, возможно, будет внести определенные изменения в конструкцию или учесть целостность сигнала и питания для заданного узла или блока РЭС при воздействии температуры и влажности. В результате предложенная методика может быть полезна в качестве инструмента для повышения устойчивости и срока службы РЭС, а также при моделировании ЛП на начальных этапах проектирования ПП критичных РЭС, и позволит учесть влияния температуры и влажности на S-параметры ЛП.

Используя методику, выявлено, что пленка воды, нанесенная на один из концов МПЛ и создающая неоднородность в поперечном сечении МПЛ, с ростом частоты уменьшает минимум $|S_{21}|$ МПЛП до минус 39 дБ, а пленка воды, нанесенная на одну из сторон сигнального проводника и не создающая при этом неоднородности поперечного сечения, расположенная на двух концах, уменьшает минимум $|S_{21}|$ МПЛ до минус 59 дБ (рисунок 3.3).

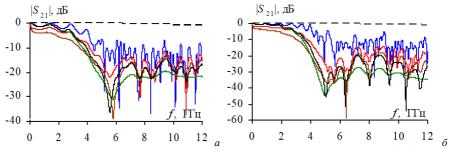


Рисунок 3.3 — Частотные зависимости $|S_{21}|$ МПЛ без (--) и со слоем дистиллированной (--), чистой (--) и морской (--) воды, с использованием моделей Дебая (--) и на основе ВП (--), создающего неоднородность поперечного (a) и продольного сечений (δ) МПЛ

В разделе 3.3 показано влияние покрытия и температуры на электрические характеристики копланарной линии передачи (КЛП) с Z_e =50 Ом длиной 60 мм и параметрами: ε_{r1} = 4,5, w = 3 мм, t_1 = 35 мкм, расстояние между проводниками s = 1,5 мм, ширина бокового проводника k = 46 мм, толщина подложки h_1 = 1,6 мм и (рисунок 3.4). Электрические и геометрические параметры пленки воды аналогичны разд. 3.3. Показано, что пленка воды на КЛП

влияет на $|S_{21}|$ в зависимости от выбранной модели воды, поскольку для чистой и морской воды происходит ослабление на частотах до 10 МГц, тогда как для модели воды на основе ВП или модели Дебая она отсутствует (рисунок 3.5).

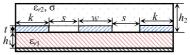


Рисунок 3.4 – Поперечное сечение КЛП со слоем воды

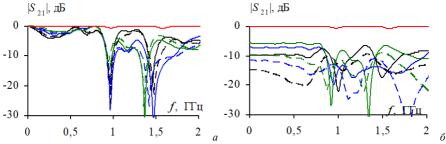


Рисунок 3.5 — Частотные зависимости $|S_{21}|$ КЛП без (—) и с разными (— 1, — 0,5 и — 0,35 мм) толщинами пленки воды, используя модели на основе ВП (—) и Дебая (——) (a), а также модели чистой (——) и морской (——) воды (δ)

Выявлено, что с ростом толщины пленки чистой воды от 0,35 до 1 мм максимум $|S_{21}|$ КЛП уменьшается от минус 1 до минус 4 дБ и от минус 2 до минус 6 дБ при появлении пленки воды на одном или двух концах КЛП. Для морской воды рост пленки воды с 0,35 до 1 мм уменьшает $|S_{21}|$ от минус 3 до минус 6 дБ и от минус 4 до минус 8 дБ при появлении пленки воды на одном или двух концах КЛП. При этом пленка чистой и морской воды оказывает

минимальное влияние на $|S_{21}|$ при ее расположении на одном или двух концах КЛП (рисунок 3.6).

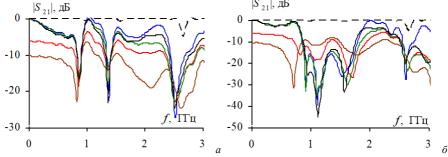


Рисунок 3.6 — Частотные зависимости $|S_{21}|$ КЛП без (— —) и со слоем дистиллированной (—), чистой (—) и морской (—) воды, с использованием моделей Дебая (—) и на основе ВП (—), создающего неоднородность в поперечном (a) и продольном сечениях КЛП (δ)

В разделе 3.4 апробирована методика оценки влияния пленки воды и слоя льда на частотные зависимости *S*-параметров МПЛ. Аналогично геометрическим моделям изготовлены макеты МПЛ на ПП размерами 100×100 мм² (ри-

сунок 3.7). По краям ПП со стороны, где расположен сигнальный проводник, имелся полигон схемной земли шириной 10 мм. Материалом диэлектрика ПП для МПЛ 1 выбран композитный материал Rogers AD1000 (ε_{r1} =10,2), для МПЛ 2, МПЛ 3 и МПЛ 4 – стеклотекстолит FR4 (ε_{r1} =4,3). Все ЛП имели Z = 50 Ом.

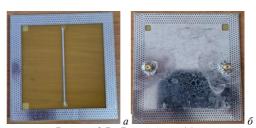
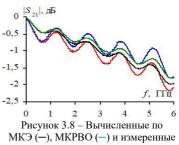



Рисунок 3.7 — Виды сверху (a) и снизу (δ) макета МПЛ на ПП

Однородная пленка воды на макетах МПЛ образовывалась искусственно, используя распылитель. Наблюдения показали, что при $h_2 = 1$ мм однородный

слой водяной пленки не образуется, поскольку материалы ПП являются несмачиваемыми и гидрофобными поверхностями. Увеличение h_2 до 2 мм приводило к образованию однородной плёнки воды. Измерения S-параметров макетов МПЛ проводилось по 3 раза при поочередном помещении их внутрь камеры «тепло-холод» ESPEC SU-262 и охлаждении от 25 до минус 50°С. Измерялись S-параметры каждого макета ЛП ВАЦ Rohde & Schwarz ZVA 40 в диапазоне частот от 0,01 до 6 ГГц.

Тисунок 3.5 – Вычилленые по МКЭ (—), МКРВО (—) и измеренные при 25 (—) и минус 50 (—) °С частотные зависимости $|S_{21}|$ для МЛП

Исследовано влияние пленки воды и слоя льда на S-параметры 4 МПЛ в диапазоне частот от 10 МГц до 6 ГГц при 25°С и минус 50°С. Показано, что температура незначительно влияет (до 1 дБ) на $|S_{21}|$ МПЛ без пленки воды и слоя льда (рисунок 3.8).

Показано, что измеренные и вычисленные МКЭ и МКРВО $|S_{21}|$ для МПЛ с пленкой воды могут отличаться от 7 до 15 дБ на частотах свыше 2 ГГц в зависимости от МПЛ, тогда как до 2 ГГц $|S_{21}|$ хорошо согласуются с разницей, не более 2 дБ (рисунок 3.9), а разница между измеренными и вычисленными $|S_{21}|$ для МПЛ со слоем льда до частоты 3 ГГц не превышает 1 дБ, а свыше 3 ГГц заметно отличается в зависимости от МПЛ (рисунок 3.10).

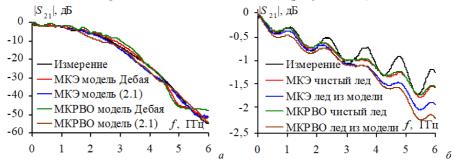


Рисунок 3.9 — Измеренные при T = 25 °C (a) и при T = -50 °C (δ) и вычисленные МКЭ и МКРВО частотные зависимости $|S_{21}|$ для МПЛП, покрытых пленкой воды и слоем льда

Заключение

Основные результаты

- 1. Разработана модель для вычисления σ воды на основе измеренных S-параметров, отличающаяся вычислением ВП воды в коаксиальной камере при изменении ее температуры. Разница с известными значениями σ в диапазоне частот до 6 ГГц составляет 1 См/м в диапазоне температур от 25 до 100°С и не превышает 0,5 См/м при отрицательных (минус 50°С) температурах, а при положительных (0°С) 1,8 См/м. Достоверность и адекватность модели для оценки σ воды при различной температуре подтверждается измеренными S-параметрами в разные дни, при разных температурах воды из одного источника.
- 2. Разработана методика анализа электрических параметров ЛП, покрытых плёнкой воды и слоем льда при различных температурах. Методика применима при моделировании ЛП на начальных этапах проектирования ПП критичных РЭС и позволяет учесть влияния температуры и влажности на *S*-параметры ЛП. Используя методику показано влияние покрытия пленкой воды и слоем льда, а также температуры на электрические характеристики МПЛ.
- 3. Показано, что наибольшее влияние на ВП полисахарида проявляется при добавлении раствора NaCl (до 10 дБ), а наименьшее (до 8 дБ) при добавлении воды и раствора CaCl₂. Выявлено, что в диапазоне частот от 10 до

- 12 ГГц ВП смеси уголь-полисахарид зависят от температуры при 25°С максимальные ВП составляют 10 дБ, тогда как при минус 30°С до 12 дБ.
- 4. Показано, что химический состав влияет на расположение проекций измеренных частотных зависимостей *S*-параметров коаксиальной камеры при разной температуре в пространстве ГК. Жидкость, содержащая NaCl, обладает максимальной разницей значений ГК по сравнению с другими растворами, измеренными при помощи коаксиальной камеры, а электрофизические характеристики данного раствора наиболее зависимы от температуры.
- 5. Выявлено, что при наличии пленки воды на поверхности МПЛ расширяется диапазон рабочих частот, а также изменяется частота среза при изменении толщины пленки воды: от 0,1 до 3 $\Gamma\Gamma$ ц для полного и от 0,1 до 3,9 $\Gamma\Gamma$ ц для частичного покрытия пленкой.
- 6. Оценено влияние пленки воды и слоя льда на частотные зависимости S-параметров на примере различных ЛП. Показано, что измеренные и вычисленные по МКЭ и МКРВО $|S_{21}|$ для ЛП с пленкой воды могут отличаться от 7 до 15 дБ на частотах свыше 2 ГГц, а до 2 ГГц могут мало отличаться (до 2 дБ) в зависимости от ЛП. Также, показано, что разница между измеренными и вычисленными $|S_{21}|$ для ЛП со слоем льда до частоты 3 ГГц не превышает 1 дБ, а свыше 3 ГГц заметно отличается, в зависимости от ЛП.

Рекомендации

- 1. Оценить влияния климатических факторов на примере используемых пористых материалов в радиоэлектронике, которые склонны к существенному изменению их массы под воздействием влажности и температуры.
- 2. Доработать предложенные рекомендации для измерения матриц рассеяния коаксиальной камеры при изменении температуры с целью минимизации этого влияния на существующие измерительные системы.

Перспективы дальнейшей разработки темы

- 1. Исследование и разработка новых методов по оценке влияния температуры и влажности на электрические характеристики узлов РЭС.
 - 2. Имитация возможного климатического воздействия на критичные РЭС.
- 3. Оценка влияния климатических факторов на экологически чистые материалы.

СПИСОК ОСНОВНЫХ ПУБЛИКАЦИЙ ПО ТЕМЕ ДИССЕРТАЦИИ Статьи в журналах из перечня ВАК

- 1. **Невежин В.Н.** Анализ электрических параметров жидкостей в коаксиальной камере при изменении температуры / **В.Н. Невежин**, М.Е. Комнатнов, А.В. Бусыгина // Ural Radio Engineering Journal. 2023. Т. 7, №. 1. С. 37—55.
- 2. **Невежин В.Н.** Оценка влияния тонкой пленки воды на частотные зависимости S-параметров линии передачи при положительной и отрицательной температурах / **В.Н. Невежин**, М.Е. Комнатнов // Труды учебных заведений связи. -2024. -№ 5(10). -C 24–33.

Доклады в трудах конференций, индексируемых WoS и Scopus

- 3. **Nevezhin V.** Non-thermal effects of electromagnetic radiation on a living organism / **V. Nevezhin**, A. Busygina // IEEE 22nd International Conference of Young Professionals in Electron Devices and Materials, EDM 2021, Aya, Russia, 30 June 4 July 2021, P. 403–406.
- 4. **Nevezhin V.** Analysis of electrical parameters of various liquids in a coaxial cell / **V. Nevezhin**, A. Busygina, M. Komnatnov // 2022 Ural-Siberian Conference on Biomedical Engineering, Radioelectronics and Information Technology (US-BEREIT), Yekaterinburg, Russian Federation, 19–21 September 2022, P. 122–125
- 5. **Nevezhin V.** Research of attenuation of the electromagnetic wave amplitude by organic materials in a coaxial cell / **V. Nevezhin**, M. Komnatnov, A. Busygina // 2022 International Ural Conference on Electrical Power Engineering (UralCon), 23-25 September 2022, P. 313–317.
- 6. **Nevezhin V.N.** Measurement of insertion losses of aqueous calcium and sodium chloride solutions in liquid and solid aggregate states in a coaxial cell / **V.N. Nevezhin**, M.E. Komnatnov, A.V. Busygina // 2023 Radiation and Scattering of Electromagnetic Waves (RSEMW), Divnomorskoe, (Russian Federation), 2023, P. 96–99.
- 7. **Nevezhin V.N.** Estimation of water conductivity using a coaxial cell under temperature change / **V.N. Nevezhin**, M.E. Komnatnov // 2024 IEEE 25th International Conference of Young Professionals in Electron Devices and Materials (EDM). Altai, (Russian Federation), 2024, P. 1570–1574.

Доклады в трудах отечественных конференций

- 8. **Невежин В.Н.** Обзор способов определения химических и биологических компонент в жидкостях при помощи СВЧ-устройств / **В.Н. Невежин**, А.В. Бусыгина // XVII Международная научно-практическая конференция «Электронные средства и системы управления». Томск, Россия. 2021. С. 22–25.
- 9. **Невежин В.Н.** Обзор электрических моделей биологических клеток // Материалы XXVI Международной научно-технической конференции студентов, аспирантов и молодых ученых «Научная сессия ТУСУР-2021». Томск, Россия, 19–21 мая 2021 г. Ч. 2. С. 220–223.
- 10. **Невежин В.Н.** Влияние геометрических и электрофизических параметров модели биологической клетки на емкость плоского конденсатора / **В.Н. Невежин**, И.И. Николаев // Материалы XXVI Международной научнотехнической конференции студентов, аспирантов и молодых ученых «Научная сессия ТУСУР–2021» Томск, Россия, 19–21 мая, 2021. Ч. 1. С. 223–226.